Abstract
The occurrence of supernumerary digits or toes in humans and other tetrapods has attracted general interest since antiquity and later influenced scientific theories of development, inheritance, and evolution. Seventeenth-century genealogical studies of polydactyly were at the beginning of an understanding of the rules of inheritance. Features of polydactyly were also part of the classical disputes on the nature of development, including the preformation-versus-epigenesis and the atavism-versus-malformation debates. In the evolutionary domain, polydactyly was used in the criticism of the gradualist account of variation underlying Darwin’s theory. Today, extra digit formation plays a role in the conceptualization of gene regulation and pattern formation in vertebrate limb evolution. Recent genetic, experimental, and modeling accounts of extra digit formation highlight the existence of nongradual transitions in phenotypic states, suggesting a distinction between continuous and discontinuous variation in evolution. Unless otherwise noted, all translations are our own.
Download full-text PDF |
Link | Source |
|---|---|---|
| Download Source 1 | https://www.journals.uchicago.edu/doi/10.1086/690841 | Web Search |
| Download Source 2 | http://dx.doi.org/10.1086/690841 | DOI Listing |