Abstract

The elephant proboscis (trunk), which functions as a muscular hydrostat with a virtually infinite number of degrees of freedom, is a spectacular organ for delicate to heavy object manipulation as well as social and sensory functions. Using high-resolution motion capture and functional morphology analyses, we show here that elephants evolved strategies that reduce the biomechanical complexity of their trunk. Indeed, our behavioral experiments with objects of various shapes, sizes, and weights indicate that (1) complex behaviors emerge from the combination of a finite set of basic movements; (2) curvature, torsion, and strain provide an appropriate kinematic representation, allowing us to extract motion primitives from the trunk trajectories; (3) transport of objects involves the proximal propagation of an inward curvature front initiated at the tip; (4) the trunk can also form pseudo-joints for point-to-point motion; and (5) the trunk tip velocity obeys a power law with its path curvature, similar to human hand drawing movements. We also reveal with unprecedented precision the functional anatomy of the African and Asian elephant trunks using medical imaging and macro-scale serial sectioning, thus drawing strong connections between motion primitives and muscular synergies. Our study is the first combined quantitative analysis of the mechanical performance, kinematic strategies, and functional morphology of the largest animal muscular hydrostat on Earth. It provides data for developing innovative "soft-robotic" manipulators devoid of articulations, replicating the high compliance, flexibility, and strength of the elephant trunk. VIDEO ABSTRACT.

Download full-text PDF

Link Source
Download Source 1https://linkinghub.elsevier.com/retrieve/pii/S0960982221011337Web Search
Download Source 2http://dx.doi.org/10.1016/j.cub.2021.08.029DOI Listing

Publication Analysis

Top Keywords

elephants evolved
8
evolved strategies
8
biomechanical complexity
8
complexity trunk
8
muscular hydrostat
8
functional morphology
8
motion primitives
8
trunk
7
strategies reducing
4
reducing biomechanical
4